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Unsolved problems in observational astronomy. II.
Focus on rapid response — mining the sky with *‘thinking’’ telescopes
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Abstract. The existence of rapidly slewing robotic telescopes and fast alert distribution via the Internet is revolutionizing
our capability to study the physics of fast astrophysical transients. But the salient challenge that optical time domain surveys
must conquer is mining the torrent of data to recognize important transients in a scene full of normal variations. Humans
simply do not have the attention span, memory, or reaction time required to recognize fast transients and rapidly respond.
Autonomous robotic instrumentation with the ability to extract pertinent information from the data stream in real time will
therefore be essential for recognizing transients and commanding rapid follow-up observations while the ephemeral behavior
is still present. Here we discuss how the development and integration of three technologies: (1) robotic telescope networks;
(2) machine learning; and (3) advanced database technology, can enable the construction of smart robotic telescopes, which

we loosely call “thinking” telescopes, capable of mining the sky in real time.
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1. Introduction

The global time variability of the night sky is essentially un-
known (e.g. Paczynski 2000). Nevertheless, limited surveys
of time variability have already had profound scientific im-
pact by revealing the existence of dark energy in the universe
(e.g. Riess et al. 1998, Perlmutter et al. 1999). That discov-
ery has led the world’s leading scientific research organiza-
tions to plan major investments in extensive variability sur-
veys that will revolutionize time domain astronomy. But the
unsolved problem for these giant surveys is how to mine the
torrent of data—which for the Large Synoptic Survey Tele-
scope (LSST) will be a 2 Giga-pixel image every 10 seconds
(Tyson 2002)— and to recognize important variations in a
scene full of normal variations and command follow-up ob-
servations in real time. The surveys threaten to drown us in a
flood of data, but leave us thirsty for knowledge.

The knowledge extraction and discovery techniques em-
ployed in astronomy have not progressed very far from those
employed by Tycho Brahe when, on 11 November 1572,
he started modern time domain astronomy by discovering a
bright new star that was not in his “mental catalog” of the
night sky. Typically humans still screen the reduced data even
from robotic telescopes and, based on their knowledge and
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memory, identify candidates for follow-up observations. But
modern data sets are simply becoming too large. Recogni-
tion of ephemeral changes of persistent sources in huge data
streams and identification of fast celestial transients in the
forest of non-celestial transients cannot be left to human an-
alysts. Humans simply do not have the attention span, mem-
ory, or reaction time required to monitor huge volumes of
data, recognize the important variations, and promptly re-
spond with follow-up observations. The ability of modern
instrumentation to collect data at dazzling rates has pushed
knowledge extraction in astronomy to a tipping point. The
process of discovery must fundamentally change. In this pa-
per, we argue that the solution is the integration of robotic
telescopes with modern artificial intelligence techniques to
construct discovery engines that are capable of autonomously
mining the sky in real time.

2. “Thinking” telescopes

The human brain, through a process we loosely call thinking,
integrates data collection, pattern recognition, object classifi-
cation, and memory to obtain a higher understanding of what
action needs to be taken and promptly takes action to respond
to a threat or an opportunity. To mine the night sky effectively
in the new era of time domain astronomy, we must construct
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Fig. 1. Three technologies must be integrated in order to create au-
tonomous robotic telescope systems capable of finding and making
more detailed follow-up observations of ephemeral source anoma-
lies in real time.

“thinking” robotic telescopes. These next generation robotic
systems will not only have to be autonomous, they must also
have a continuously evolving knowledge of normal behavior
and be capable of recognizing subtle anomalies in a torrent of
data. They must respond in real time by formulating queries
and priorities, by commanding follow-up observations, and
by learning to optimize the response. Just as the Internet and
search engines have revolutionized the way we search for and
collect information, discovery in time domain astronomy will
rely on advanced data mining, visualization tools, and smart
algorithms to automate the extraction of knowledge from the
observations in real time.

The technological building blocks for constructing
robotic thinking systems exist: autonomous data collection,
robotic hardware control, database construction and query,
pattern recognition, object classification, and other forms of
automated knowledge extraction. The challenge is to inte-
grate these building blocks into autonomous thinking sys-
tems for observational science. To construct thinking tele-
scopes for astronomy, we must develop and integrate technol-
ogy in three key areas (see Fig. 1): (1) distributed networks
of robotic monitoring and response telescopes; (2) machine
learning techniques for automated knowledge extraction in
real time; and (3) virtual observatories employing advanced
database technology that provide context information in real
time. Here we discuss briefly the application of these three
enabling technologies to robotic astronomy.

3. Networks of robotic telescopes

Networks of autonomous robotic response telescopes already
exist. The best known example is the informal world-wide
network of ground-based telescopes that promptly respond
to real time Gamma Ray Burst (GRB) alerts generated by
High-Energy satellites and distributed by the GRB Coordi-
nates Network (GCN; Barthelmy et al. 2000). Here the net-
work operates in an “open loop” manner. The network tele-
scopes receive the alert and respond, but all the real time in-
formation flows in one direction.
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Effective deployment of thinking technology in robotic
telescope system will require the capability to operate in a
“closed loop” manner. In this mode of operation, the robotic
network telescopes not only respond to alerts, but also ex-
tract information from the observations in real time and au-
tonomously send it back to the network. Given the feedback
of knowledge from other instruments, autonomous decision
units (either central or at each telescope) can then command
a modified response to optimize the information extraction
(e.g. change exposure cadence, change filters or pointing di-
rection, etc.). This feedback of real time information allows a
distributed network of telescopes to perform more efficiently
than as individual instruments.

An example of a first generation robotic telescope net-
work operating as a closed loop system is provided by the
RAPTOR (RAPid Telescopes for Optical Response) system
at Los Alamos National Laboratory (Vestrand et al. 2002).
RAPTOR links together eleven small telescopes (eight wide-
field monitoring and three narrow-field response telescopes)
located at two spatially separated sites to act as an au-
tonomous system capable of finding optical transients and
making follow-up observations in real time. Four wide-field
telescopes at each site simultaneously mosaic the same 1300
square-degree patch of sky. All of the telescopes in the net-
work have dedicated control computers that run a photom-
etry/astrometry pipeline capable of identifying optical tran-
sients in real time. The sky-monitoring task is therefore di-
vided into pieces and distributed to a network of telescopes
that run in parallel. Network intercommunication synchro-
nizes the operation of the telescopes and passes information
about the detection of transients back to the network server. A
central decision unit then decides if an alert should be gener-
ated and, if the answer is yes, distributes the alert back to the
telescope network and closes the information loop by com-
manding real time follow-up observations of the optical tran-
sient.

Intercommunication between telescopes is the key to re-
liable real time identification of celestial optical transients by
the RAPTOR system. To identify celestial transients robustly,
the triggering software requires: (1) simultaneous identifica-
tion of the transient by both spatially separated telescope ar-
rays and (2) the absence of a measurable parallax. The tele-
scope arrays are separated by 38 kilometers and the wide-
field imagers have a single pixel resolution of 34 arcsec-
onds. So any non-celestial transient generated out to the dis-
tance of the moon will have a parallax that is measurable
by the wide-field monitors. This no-parallax requirement re-
duces the number of false triggers by several orders of mag-
nitude. Real time intercommunication therefore makes the
distributed network much more powerful than the sum of its
parts.

Spatially distributed robotic telescopes linked together
with Internet communication can therefore operate in a man-
ner similar to the GRID paradigm that is employed for dis-
tributed high-performance computing (Foster et al. 2001). In-
frastructure software that will allow the formation of inter-
communicating global networks of autonomous robotic tele-
scopes is already being developed (e.g. White et al. 2004,
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Allan et al. 2004). This networking will allow alerts to be
passed among the telescopes and, when coupled with intel-
ligent client software at the network telescopes, enable each
telescope to configure a real time response based upon its ca-
pabilities, schedule, and priorities.

By closed-loop networking of even small aperture moni-
toring telescopes with rapid response telescopes into a world-
wide distributed system, one can expect to extract a broad
range of discoveries. Such a system could conduct the first
comprehensive global census of stellar flaring, find unpre-
dicted close encounters with nearby solar system objects,
search for ”orphan” gamma-ray bursts, discover novae, and
find the nearby supernovae needed to calibrate observational
estimates of dark energy in the universe (see, e.g. Paczynski
et al. 2001).

4. Machine Learning

Even without “thinking”, distributed networks of rapidly re-
sponding robotic telescopes can produce important science.
But the full power of robotic systems will only be unleashed
if we build them with an ability to recognize not only tran-
sients but also important variations in persistent sources.

An important step in this direction has already been taken
by the microlensing surveys. The OGLE and Macho projects,
for example, developed a real time alert system capable of
identifying on-going microlensing events with minimal hu-
man screening (e.g. Udalski et al. 1994, Alcock et al. 1997,
Udalski 2003). These systems look for the unique lightcurve
shape and achromaticity indicative of microlensing events.
But the understanding of most astronomical objects is too in-
complete to predict the properties of important changes.

An alternative approach is to create a record of the ob-
served variations for every source and to employ Machine
Learning (ML) techniques to train the system to recognize
important changes as they are happening. ML techniques
have been developed for knowledge extraction both from im-
ages and time series data. But can one automate some of those
ML techniques and integrate them with robotic telescopes
to enable real-time follow-up observations? Speed, sensitiv-
ity, and the suppression of false positives are important chal-
lenges.

Various real world artifacts, from airplane lights and
clouds to sensitivity variations for individual pixels and other
non-celestial phenomena that cannot be predicted, will in-
evitably contaminate the observations. Automated identifi-
cation of these unwanted artifacts is essential for the con-
struction of autonomous robotic systems. But experience has
shown us that there is a broad continuum of extraneous arti-
facts and it is very difficult to deal with them on a piecemeal
basis with hard-wired code. The advantage of ML is that it
can provide techniques that allow the system to be trained to
identify anomalies and artifacts, and learn to adapt, based on
actual in-the-field data. This approach can enable the robotic
system to become smarter and to continuously improve the
overall quality of the data collection and system response.

Another significant advantage of the ML approach is that
it can provide software with an interface that allows as-

tronomers to interact with the autonomous telescope system
and to construct queries such as “find more like this” or if
you ever detect something like “this” notify me and make it a
high priority for prompt follow-up observations. The robotic
system can then act as an evolving search engine continu-
ously monitoring a dynamic database—the night sky—and
responding when a new observing opportunity arises.

Here we briefly discuss three broad classes of Machine
Learning applications that are likely play an important role in
robotic astronomy.

4.1. Machine Learning and image operators

Construction of thinking astronomical telescopes will require
the development of flexible software capable of rapid and re-
liable pattern recognition in imaging data. The evolution of
living systems has inspired a technique called genetic pro-
gramming for developing optimal code by competing a pop-
ulation of individuals through successive reproduction with
modification followed by selection based on a fitness measure
(Fogel et al. 1966). A software package called GENIE (Ge-
netic Imagery Exploration; Theiler et al. 1999) uses this ge-
netic programming technique to construct imaging process-
ing tools for feature extraction from low-level image opera-
tors(e.g. dilation, erosion, smoothing, sharpening, etc.). GE-
NIE generates a population of candidate tools, ranks them
according to performance on training data, and the highest
ranked tools are permitted to reproduce. The process con-
tinues until the population converges on an optimal solution
or the user accepts the solution and stops the evolution. The
user is also able to direct the evolution by modifying or sup-
plementing the training data. The GENIE package has been
shown to quite successful in the development of tools for ef-
ficient automated feature recognition in remote sensing ap-
plications ranging from the identification of craters on Mars
(Plesko et al.2002) to the identification of cancerous cells in
bio-medical imaging ((Harvey et al. 2003) . We believe that
the GENIE approach has great potential for developing effi-
cient algorithms for real time feature extraction and classifi-
cation in astronomical images.

The true utility of the machine learning techniques em-
ployed by GENIE is their flexibility. Traditional approaches
require the writing of specialized code for each type of fea-
ture that one wants to find and entails careful specification
of the features as well as a substantial amount of trial and
error when applied to real images. In the ML approach one
shows the machine what to find and the software derives clas-
sification algorithms directly from examples in real data. So
when new classes of objects are identified or instrumental ar-
tifacts emerge, one can rapidly evolve new code for identify-
ing them.

These ML techniques will provide powerful tools for de-
veloping a flexible pipeline capable of change detection in
astronomical images and automated classification of the de-
tected changes in real time. For example, one could apply
the Alard-Lupton PSF-matching algorithm (Alard and Lup-
ton 1998) with a spatially varying convolution kernel to dif-
ference the new image with an earlier reference image. An

(©2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



480

Astron. Nachr. / AN 325, No. 6-8 (2004) / www.an-journal.org

ML program like GENIE could then be used to develop real
time classification of the detected changes. In an autonomous
robotic system, these classified changes would then be fed
back to the central decision unit to determine their priority for
follow-up and command the response if action is needed. The
changes could be generated by instrumental problems (cam-
era noise, focus, clouds, etc.) that require action to maintain
data quality or real astrophysical transients that require alert
generation and real time follow-up.

4.2. Machine Learning and object classification

The sky is full of varying celestial sources, so another chal-
lenge to synoptic time domain surveys will be the classifica-
tion of variable objects. Even a shallow survey with a limiting
magnitude of 16th would detect about 100,000 variable stars
in the full sky. If one allocates only two minutes for an analyst
to load the data and manually classify each variable, classi-
fying the entire sample would take a human analyst, working
40-hour weeks, nearly two years. It is just not practical for
human analysts to classify the variables in samples that large.

Development of accurate Machine Learning algorithms
for classification of astronomical objects will be essential for
efficient mining of the next generation of time domain sur-
veys. There are two basic ML approaches that are employed
by automated machine classifiers — supervised learning and
unsupervised learning. Supervised techniques require a train-
ing sample composed of examples with known class member-
ship produce a classifier that can associate these class labels
to data not in the training set. Unsupervised techniques oper-
ate without information about class membership and cluster
the data into distinct classes without providing any particular
labels for the different classes. Since they utilize prior domain
knowledge, supervised classifiers normally outperform unsu-
pervised classifiers. But unsupervised classifiers are capable
of finding previously unknown classes of objects.

Both supervised and unsupervised classifiers have been
successfully applied to the classification of variable stars
based on light curves (e.g. Wozniak et al. 2002, Brett et
al.2004). For example, Support Vector Machines (SVMs;
Vapnik 1995), a modern algorithm employing supervised
learning can classify variable stars with accuracies of better
than 90% — comparable to the level of agreement typically
achieved between independent human experts. We expect a
significant effort in the application of the broad range of ex-
isting machine learning techniques to the classification of as-
tronomical objects as the volume of data provided by giant
surveys make automated classification essential.

4.3. Machine Learning and anomaly detection

Particularly interesting targets for real time follow-up ob-
servations are anomalies—unusual image change objects or
unusual variability patterns that are not among the specified
classes. ML theory has developed techniques for anomaly de-
tection that use unlabelled data (from samples of the archive
itself) and through an unsupervised learning procedure estab-
lish a ’simplest” specification of the data (Theiler and Cai
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Fig. 2. The clustering of objects in feature space. The question marks
indicate the positions of anomalies.

2003). As illustrated in Fig. 2, similar objects cluster in com-
plex regions of n-dimensional parameter space. Objects in the
various feature regions can therefore be flagged as instrumen-
tal artifacts or as known object families. Data not described
by this specification (the question mark points in Fig. 2) are
treated as anomalies and identified for follow-up studies to
determine their properties.

Since there is no way to define a priori what consti-
tutes an interesting anomaly, in the early phases human ex-
perts help guide the anomaly detection system toward op-
timal automatic operation. During training, human experts
are offered anomalies by the system and the expert deter-
mines whether or not the anomaly is interesting and, if yes,
grades the anomaly on importance for follow-up. The system
therefore learns to optimize its performance for real time au-
tomated operation. Many anomalies will be instrumentation
errors; automating their identification will allow the system
to recognize problems and take corrective action to maintain
data quality. But some of the anomalies will be rare astro-
physical objects or events that might otherwise have gone
undiscovered.

5. Context, Virtual Observatories, and
database technology

Persistent monitoring and construction of a baseline record
of temporal variability is essential for distinguishing normal
variations from anomalous variations. Without context infor-
mation the system cannot “think and learn”, it can only apply
static criteria to newly collected data in the analysis pipeline.

Context information for robotic instrumentation is best
provided by a Virtual Observatory (VO) that is constructed
from the instrument’s own observations. The VO can then
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Fig. 3. The positions of objects in the SkyDOT Virtual Observatory
brighter than 11¢* magnitude (~500,000 objects) plotted in an equal
area projection. Each object has a measured time history composed
of typically a few hundred measurements spread over at least a one-
year baseline.

store both the measurements and learned experience (derived
information and relations found by ML algorithms) as well as
act as a platform for mining and knowledge extraction. But to
maximize adaptability of the anomaly detection software and
scientific utility of the VO, it must have a powerful interface
that enables extensive data mining and integration with other
VO databases.

Virtual Observatories will be powerful tools for discovery
in time domain astronomy (e.g. Brunner et al. 2001). Sev-
eral time domain projects have already created first gener-
ation VOs mining their data. For example, the ASAS (All
Sky Automated Survey) project (Pojmanski 2002 project has
constructed a VO that allow one to explore the variability of
sources in the southern hemisphere. We have constructed a
northern hemisphere VO called SkyDOT (Sky Database for
Objects in the Time Domain; Wozniak et al. 2002) that con-
tains a full year of our observations for ~10 million sources
covering the full sky visible from Los Alamos, New Mex-
ico (see Fig. 3). These first generation time domain VOs give
us valuable databases to use in the development of ML and
anomaly detection algorithms as well as give a reasonable
temporal baseline to explore with our new algorithms. But
these first generation VOs are static or slowly updated.

To be most effective, the next generation of time-domain
VOs will have to be dynamic. By dynamic we mean contin-
uously updatable in real, or nearly real, time. This will allow
robotic telescopes and astronomers to determine what other
telescopes measured earlier in the day or what other instru-
ments are measuring both in real time and in historical con-
text. This is a challenging goal. It will require the develop-
ment of new metadata standards for temporal databases and
astronomical extensions for database management and query
languages.

Another challenge for the implementation of dynamic
VOs is the development of new techniques to append the

data in real time while maintaining very efficient access to
all the data. Some limited capability for incremental indexing
exists but query performance rapidly degrades as data is ap-
pended. A related issue is that of data locking and the ability
to keep running very large queries while new data is being
written. Relational database technology has solved some of
those problems, but work remains to be done to ensure that it
is scalable to the Petabyte regime.

The massive data volumes generated by the new gen-
eration of time domain instrumentation and the need to
access that information rapidly, will require the develop-
ment of new, cost effective, massive storage systems. The
price/performance advantages of Beowulf clusters built of
commodity components changed the landscape for super-
computing. Due to the development of distributed disk array
(DDA) technology and the sharply declining price per Ter-
abyte (TB) of commodity disk drives, we are poised for a
similar advance in data storage. Currently (summer 2004),
single-node RAID storage systems with 2 TB capacity us-
ing commodity hard drives cost of less than $4K. Those
”brick” systems, when used in a parallel cluster environment,
can form DDAs with hundreds of TB storage capacity and
read/write bandwidths that greatly exceed those of existing
Gigabit local and wide-area networking technology. Further,
the greater CPU/storage ratio and network integration in a
DDA offers the possibility of data analysis techniques not
possible with traditional storage approaches.

6. Conclusions

Discovery in astronomy is too important to be left to As-
tronomers (or their graduate students). The massive data
flows being generated by modern instrumentation has pushed
human capabilities to their limit, so that the process of dis-
covery must change. The problem is most acute in time do-
main astronomy, where, to be effective, ephemeral and of-
ten subtle changes must be recognized and responded to in
real time. The integration of robotic telescope technology,
machine learning techniques, and virtual observatory con-
text information to form autonomous robotic telescope net-
works (see Fig. 4) shows promise for solving the challenge
of knowledge extraction in real time. We believe scientific
instrumentation is entering an era wherein these technologies
will be integrated to be build advanced observing systems,
which we call “thinking” systems, that will fundamentally
change the process of discovery in observational science.
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